Zehnter Bericht der Atomgewichtskommission der Internationalen Union für Chemie.

G. P. Baxter (Vorsitzender), M. Guichard, O. Hönigschmid und R. Whytlaw-Gray.

(Eingegangen am 12. Februar 1940.)

Der folgende Bericht der Kommission umfaßt die zwölfmonatige Periode vom 30. Sept. 1938 bis 30. Sept. 1939¹).

Es wurden drei Änderungen in der Tafel der Atomgewichte vorgenommen. Wasserstoff, von 1.0081 in 1.0080 Eisen, von 55.84 in 55.85

Cassiopeium, von 175.0 in 174.99

Wasserstoff. — Mehrere während der letzten 4 Jahre ausgeführte Untersuchungen über das Verhältnis ¹H/²H in gewissen natürlichen Wasservorkommen ergaben Werte, die höher sind als der bisher zur Berechnung des Tabellenwertes für Wasserstoff benutzte Wert 5000. (Siehe VIII. Bericht dieser Kommission.)

Johnston ²) 5900	Morita u. Titani ⁶) 6320
Tronstad, Nordhagen u. Brun3) 5840	Tronstad u. Brun ⁷) 5400
Hall u. Jones ⁴) 6550	Voskuyl ⁸)
Gabbard u. Dole ⁵) 7020	Swartout u. Dole ⁹) 6970, 6880

Da für $^1\mathrm{H} = 1.00785$ (auf chemische Basis gerechnet) und selbst mit $^1\mathrm{H}/^2\mathrm{H} = 6\,000$ das Atomgewicht des Wasserstoffs in natürlichen Wässern sich zu 1.0080 berechnet, wird dieser Wert in die Tabelle aufgenommen, wiewohl die Natur des Wasserstoffs in irgendeiner Verbindung einer kleinen Unsicherheit unterworfen ist.

Chlor. — Hönigschmid und Hirschbold-Wittner¹⁰) bestimmten das Atomgewicht von Chlor in Proben von Chlorwasserstoff, der von Clusius und Dickel einer Isotopentrennung nach der Thermo-Diffusions-Methode unterworfen wurde. Gewogene Mengen von Silber wurden mit einem Überschuß der Säure gefällt, das Chlor-Silber gesammelt und gewogen. Es werden die Vakuumgewichte angegeben.

_	Ag im Vak.	AgCl im Vak.	AgCl/Ag	AtGew. v. Cl
Schwere Fraktion	0.59164	0.78666	1.32963	35.560
	0.48005	0.64450	1.34257	36.956
	0.73019	0.96925	1.32739	35.310
Leichte Fraktion	0.61237	0.81188	1.32580	35.147
	0.58001	0.76830	1.32463	35.021
	0.57969	0.76765	1.32428	34.979

¹⁾ Die Verfasser von Abhandlungen über Atomgewichtsfragen werden gebeten, Sonderdrucke ihrer Arbeiten jedem der vier Mitglieder der Kommission ehetunlichst zu übersenden.

Anm. d. Redaktion: Deutschen Autoren wird empfohlen, solche Sendungen über die Geschäftsstelle der Deutschen Chemischen Gesellschaft zu leiten.

- ²) Journ. Amer. chem. Soc. 57, 484 [1935].
- ³) Nature 136, 515 [1935]. ⁴) Journ. Amer. chem. Soc. 58, 1915 [1936].
- ⁶) Journ. Amer. chem. Soc. **59**, 181 [1937]. ⁶) Bull. chem. Soc. Japan **13**, 419 [1938].
- 7) Trans. Faraday Soc. 34, 766 [1938]. 8) Thesis, Harvard University [1938].
- 9) Journ. Amer. chem. Soc. 61, 2025 [1939].
- ¹⁰) Ztschr. anorgan. allgem. Chem. **242**, 222 [1939].

Anschriften: Prof. G. P. Baxter, Coolidge Laboratory, Harvard University, Cambridge, Mass., USA.; Prof. M. Guichard, Laboratoire de chimie, 1 Rue Victor Cousin, Paris Ve, France; Prof. O. Hönigschmid, Sophienstr. 9/2, München 2 NW, Deutschland; Prof. R. Whytlaw-Gray, University of Leeds, Leeds, England.

40 1940. A

Wenn die Atomgewichte der Hauptisotopen des Chlors den auf die chemische Basis bezogenen Werten 34.971 und 36.968 entsprechen, so wurde offenbar eine nahezu vollständige Trennung erzielt.

Eisen. — Hönigschmid und Liang¹¹) verglichen Ferrobromid mit Silber und Silberbromid. Eine Lösung von Mohrschem Salz wurde durch Schwefelwasserstoff von den Schwermetallen befreit. Nach erfolgter Oxydation wurde Ferrihydroxyd aus saurer Lösung 3-mal ausgefällt, die dritte Fällung in Schwefelsäure gelöst und elektrolytisch zu Ferrosulfat reduziert, das durch Krystallisation abgeschieden wurde. Es folgte die elektrolytische Abscheidung von metallischem Eisen aus Ammonoxalatlösung und das erhaltene Metall wurde in Salpetersäure gelöst. Kohle wurde durch Filtration entfernt und die Lösung des Ferrinitrats zur Krystallisation eingedampft. Thermische Zersetzung zu Oxyd und Reduktion des letzteren durch Wasserstoff lieferte die Probe I. Spektroskopische Untersuchung durch Gerlach ließ keine Verunreinigung erkennen. Die vereinigten Mutterlaugen von Ferrinitrat wurden noch 2-mal aus Salpetersäure umkrystallisiert und lieferten nach Umwandlung in das Metall die Probe II.

Es wurde eine Synthese des Bromids ausgeführt durch Erhitzen des reinen Metalls in einem Strom von Stickstoff und Brom. Das sublimierte Produkt wurde ein 2. Mal in reinem Stickstoff sublimiert und im selben Gas in einem gewogenen Quarz-Röhrenschiffchen geschmolzen, das in trockner Luft in sein Wägeglas eingeschlossen werden konnte. Nach der Wägung wurde das Salz in mit Schwefelsäure angesäuertem Wasser gelöst. Die Lösung war klar und frei von Ferrisalz. Nach sorgfältiger Oxydation mit etwas weniger als der berechneten Menge Bichromat wurde die Lösung in üblicher Weise mit Hilfe des Nephelometers mit Silber gemessen. Bei den meisten Analysen wurde auch das gefällte Bromsilber gesammelt und gewogen. Die Wägungen wurden für das Vakuum korrigiert.

Das.	Aton	ıgewic	ht (des	Eisens.
------	------	--------	------	-----	---------

Probe	FeBr ₂ im Vak.	Ag im Vak.	FeBr ₂ ':2 Ag	AtGew. v. Fe	AgBr im Vak.	FeBr ₂ :2 AgBr	AtGew. v. Fe
I	1.85170	1.85236	0.999644	55.851			
1	3.30576	3.30690	0.999655	55.854			
1 I	2.07499	2.07574	0.999639	55.850			
II	3.28783	3.28900	0.999644	55.851	5.72554	0.574239	55.848
J	2.92032	2.92137	0.999641	55.850	5.08551	0.574243	55.849
I	3.30851	3.30966	0.999653	55.853	5.76158	0.574237	55.847
I	2.32787	2.32870	0.999644	55.851	4.05371	0.574257	55.854
I	2.83665	2.83765	0.999648	55.852	4.93977	0.574247	55.8 5 1
II	2.80087	2.80188	0.999640	55.850	4.87744	0.574250	55.852
ш	2.61260	2.61354	0.999640	55.850	4.54968	0.574238	55.847
II	2.85977	2.86078	0.999647	55.852	4.90806	0.574244	55.849
		Mittel	0.999645	55.851		0574.244	55.850

Das Mittel aller Bestimmungen 55.850 ist ein wenig höher als der durch Analyse von Ferrobromid von Baxter, Thorvaldson und Cobb¹²) gefundene Wert 55.838. Die Ursache für diese Abweichung ist vielleicht darin zu suchen, daß das von den letztgenannten Forschern angewandte Material Spuren von

¹¹) Ztschr. anorgan. allgem. Chem. 241, 361 [1939].

¹²⁾ Journ. Amer. chem. Soc. 33, 319 [1911].

Kohle und möglicherweise auch von Ferrisalz enthielt. Durch Reduktion von Ferrioxyd fanden Baxter und Hoover¹⁸) 55.847, während Hönigschmid, Birkenbach und Zeiss¹⁴) durch die Analyse des Ferrichlorids den Wert 55.853 erhielten.

Die neuesten Bestimmungen der Mengenverhältnisse der Eisen-Isotopen mit Hilfe des Massenspektrographen ergeben umgerechnet auf die chemische Basis mit dem Packungsanteil 7×10^{-4} und mit dem Umrechnungsfaktor 1.000275 die folgenden Werte:

Isotope	54	5 6	57	58	Mittlere Massenzahl	AtGew.
de Gier u. Zeeman ¹⁶)	6.5	90.2	2.8	0.5	55.908	55.853
Nier ¹⁷)	6.04	91.57	2.11	0.28	55.906	55.851

Angesichts dieser Befunde scheint der Wert 55.85 wahrscheinlicher zu sein als der ältere, 55.84, und wurde deshalb in die Tafel aufgenommen, wiewohl der durch die direkteste Methode, nämlich die Reduktion des Ferrioxyds erhaltene Wert 55.847 als ein Maximum angesehen werden könnte, da die Möglichkeit nicht ausgeschlossen werden konnte, daß die Reduktion nicht ganz vollständig verlaufen sei.

Molybdän. — Mattauch und Lichtblau¹⁸) bestimmten die relativen Häufigkeiten der Molybdän-Isotopen. In der folgenden Tafel werden die von ihnen gefundenen Prozentgehalte jenen früher von Aston gefundenen gegenübergestellt. Das Atomgewicht wurde berechnet mit dem Packungsanteil -6.0×10^{-4} (Dempster) und mit dem Umrechnungsfaktor 1.000275.

	92	94	95	96	97	98	100	Mittlere Massenzahl	AtGew. Mo
Aston	14.2	10.0	15.5	17.8	9.6	23.0	9.8	95.94 19)	95.86
Mattauch u. Lichtblau	15.5	8.7	16.3	16.8	8.7	25.4	8.6	95.98	95.90

Beide Werte sind beträchtlich niedriger als der von Hönigschmid und Wittmann bei der Analyse des Molybdänpentachlorids erhaltene, 95.949, der vor zwei Jahren in die Tafel aufgenommen wurde. (Siehe VIII. Bericht dieser Kommission.)

Europium. — Lichtblau²⁰) bestimmte das Häufigkeitsverhältnis der Europium-Isotopen ¹⁵¹Eu/¹⁵³Eu zu 0.963±0.012. Mit dem Packungsanteil —2×10⁻⁴ (Dempster) und dem Umrechnungsfaktor 1.000275 berechnet sich das Atomgewicht des Europiums zu 151.95±0.01. Dieser Wert für Europium stimmt viel besser überein mit dem jüngst von Baxter und Tuemmler²¹) durch Analyse des Europiumdichlorids gefundenen, 151.96, als mit Kapfenbergers neuem Wert 151.90.

¹³) Journ. Amer. chem. Soc. **34**, 1657 [1912]. ¹⁴) B. **56**, 1473 [1923].

¹⁵⁾ Dempster, Physic. Rev. 53, 869 [1938].

¹⁶) Proceed. Roy. Soc. Amsterdam 38, 959 [1935].

¹⁷⁾ Physic. Rev. 55, 1143 [1939].

¹⁸⁾ Ztschr. physik. Chem. (B) 42, 288 [1939].

¹⁹) Unrichtig von Aston zu 96.03 berechnet, Proceed. Roy. Soc. London, Ser. A 180, 309 [1931].

²⁰⁾ Naturwiss. 27, 260 [1939].

²¹⁾ Siehe IX. Bericht dieser Kommission, B. 72 (A), 34 [1939].

42 1940. A

Cassiopeium. — Hönigschmid und Wittner²²) machten nähere Angaben über ihre Analyse des Cassiopeium-Trichlorids, über die schon berichtet worden war²³). Das Ausgangsmaterial war von C. Auer von Welsbach gereinigt worden und war identisch mit dem von ihm zur Atomgewichtsbestimmung benutzten. Auf Grund einer quantitativen röntgenspektroskopischen Analyse bestimmte Frau Noddack den Ytterbiumgehalt zu 1.18% und stellte fest, daß keine der anderen seltenen Erden zu mehr als 0.04% vorhanden sei. Die weitere Reinigung erfolgte durch 2-malige Fällung des Hydroxyds, begleitet von Auflösung in Salzsäure, 2-malige Fällung des Oxalats, gefolgt von jedesmaligem Verglühen zu Oxyd, und 2-maliger Krystallisation des Chlorids aus konz. Salzsäure. Das Chlorid wurde entwässert in einem Strom von Chlorwasserstoff bei allmählich bis zu 450° gesteigerter Temperatur. Nach der Wägung wurde das Salz mit Silber verglichen und in einigen Fällen auch das gefällte Chlorsilber gewogen. Die Wägungen wurden für das Vakuum korrigiert.

Das Atomgewicht des Cassiopeiums.

CpCl₃ im Vak.	Ag im Vak.	CpCl ₃ : 3 Ag	AtGew. v. Cp	AgCl im Vak.	CpCl ₃ : 3 AgCl	AtGew. v. Cp
2.10076	2.41662	0.86930	174.968	3.21098	0.65424	174.961
2.94416	3.38688	0.86928	174.964	4.50009	0.65424	174.962
2.20514	2.53662	0.86932	174.977			
2.63280	3.02874	0.86927	174.960	4.02420	0.65424	174.960
2.70083	3.10697	0.86928	174.963			
	Mittel	0.86929	174.966		0.65424	174.96 1

Die Autoren geben den Vorzug dem nach der ersten Methode (nephelometrische Titration) erhaltenen Wert 174.966. Korrigiert für den Ytterbium-Gehalt ergibt sich 174.986.

Mattauch und Lichtblau²⁴) fanden mit Hilfe des Massenspektrographen ein neues Isotop des Cassiopeiums von der Masse 176, mit einem Gehalt von 2.52%. Mit dem Packungsanteil $+1 \times 10^{-4}$ (Dempster) und dem Umrechnungsfaktor 1.000275 berechnen sie das Atomgewicht des Cassiopeiums zu 174.994 in naher Übereinstimmung mit dem von Hönigschmid und Wittner gefundenen Wert.

Der Wert 174.99 wurde in die Tafel aufgenommen an Stelle des älteren Wertes 175.0, der von Auer von Welsbach durch die Analyse des Sulfats bestimmt worden war.

Blei. — Nier²⁵) bestimmte die Häufigkeitsverhältnisse der Blei-Isotopen in 21 Proben von radiogenem Blei und berechnete die Atomgewichte dieser Proben unter Benutzung des Packungsanteils $+1.55\times10^{-4}$ und des Umrechnungsfaktors 1.000275. Während in den meisten Fällen die Übereinstimmung zwischen den so auf diesem Wege ermittelten und den chemisch bestimmten Atomgewichten zufriedenstellend ist, ergeben sich in einigen Fällen beträchtliche Abweichungen. Wird Dempsters Packungsanteil $+2.3\times10^{-4}$ benutzt, ist die Übereinstimmung weit weniger befriedigend. Das gleiche gilt für die Resultate, die Nier für gewöhnliches Blei erhalten hatte²¹).

²²) Ztschr. anorgan. allgem. Chem. **240**, 284 [1939].

²³) Naturwiss. **25**, 748 [1937]; S. VIII. Bericht dieser Kommission, B. **71** (A), 101 [1938].

²⁴) Ztschr. Physik 111, 514 [1939]. ²⁵) Physic. Rev. 55, 153 [1939].

Atomgewichte 1940.

Sym- bol	Ordnungs- zahl	Atom- gewicht		Sym- bol	Ordnungs- zahl	Atom- gewicht
Aluminium Al	13	26.97	Neon	. Ne	10	20.183
Antimon Sb	51	121.76	Nickel	. Ni	28	.: 58.69
Argon Ar	18	39.944	Niob	. Nb	41	92.91
Arsen As	33	74.91	Osmium	. Os	76	190.2
Barium Ba	56	137.36	Palladium .	. Pd	46	106.7
Beryllium Be	4	9.02	Phosphor	. P	15	30.98
Blei Pb	82	207.21	Platin	. Pt	78	195.23
Bor B	5	10.82	Praseodym .	. Pr	59	140.92
Brom Br	35	79.916	Protaktiniu	n Pa	91	231
Cadmium Cd	48	112.41	Quecksilber	. Hg	80	200.61
Caesium Cs	55	132.91	Radium	. Ra	88	226.05
Calcium Ca	20	40.08	Radon	. Rn	86	222
Cassiopeium . Cp	71	174.99	Rhenium	. Re	75	186.31
Cer Ce	58	140.13	Rhodium	. Rh	45	102.91
Chlor Cl	17	35.457	Rubidium	. Rb	37	85.48
Chrom Cr	24	52.01	Ruthenium.	. Ru	44	101.7
Dysprosium . Dy	66	162.46	Samarium .	. Sm	62	150.43
Eisen Fe	26	55.85	Sauerstoff	. 0	8	16.000 0
Erbium Er	68	167.2	Scandium .	. Sc	21	45.10
Europium Eu	63	152.0	Schwefel	. s	16	32.06
Fluor F	9	19.00	Selen	. Se	34	78.96
Gadolinium . Gd	64	156.9	Silber	. Ag	47	107.880
Gallium Ga	31	69.72	Silicium	. Si	14	28.06
Germanium . Ge	32	72.60	Stickstoff	. N	7	14.008
Gold Au	79	197.2	Strontium.	. Sr	38	87.63
Hafnium Hf	72	178.6	Tantal	. Ta	73	180.88
Helium He	2	4.003	Tellur	. Те	52	127.61
Holmium Ho	67	163.5	Terbium	. Tb	65	159.2
Indium In	49	114.76	Thallium	. Tl	81	204.39
Iridium Ir	77	193.1	Thorium .	. Th	90	232.12
Jod J	53	126.92	Thulium	. Tm	69	169.4
Kalium K	19	39.096	Titan	. Ti	22	47.90
Kobalt Co	27	58. 9 4	Uran	. U	92	238.07
Kohlenstoff . C	6	12.010	Vanadium.	. v	23	50.95
Krypton Kr	36	83.7	Wasserstoff	. H	1	1.0080
Kupfer Cu	29	63.57	Wismut	. Bi	83	209.00
Lanthan La	5 7	138.92	Wolfram	. W	74	183.92
Lithium Li	3	6.940	Xenon	. X	54	131.3
Magnesium Mg	12	24.32	Ytterbium	. Yb	70	173.04
Mangan Mn	25	54.93	Yttrium	. Y	39	88.92
Molybdän Mo	42	95.95	Zink	. Zn	30	65.38
Natrium Na	11	22.997	Zinn	. Sn	50	118.70
Neodym Nd	60	144.27	Zirkonium .	. Zr	40	91.22